CAV controllers Type VFC

Variant with rotary knob

Actuator with mechanical stops

Actuator with potentiometers

Tested to VDI 6022

For low airflow velocities

Circular mechanical self-powered volume flow controllers for the control of supply air or extract air in constant air volume systems with low airflow velocities

- Suitable for airflow velocities from 0.8 m/s
- Very simple commissioning
- Volume flow rate can be set using a rotary knob and a scale on the outside of the casing
- Simple retrofit of an actuator for variable volume flows
- Any installation orientation; maintenance-free
- Casing air leakage to EN 1751, class C

Optional equipment and accessories

- Secondary silencer Type CA, CS or CF for the reduction of air-regenerated noise
- Hot water heat exchanger Type WL and electric air heater Type EL for reheating the airflow
- Actuator for variable volume flows or for V_{min} / V_{max} switching

05/2015 – DE/en **ТROX**[®]теснык

CAV controllers General information

VFC

Туре		Page
VFC	General information	2.1 – 18
	Order code	2.1 – 21
	Quick sizing	2.1 – 22
	Dimensions and weight	2.1 – 23
	Installation details	2.1 – 24
	Specification text	2.1 – 25
	Basic information and nomenclature	2.3 – 1

VFC system

Description

2

CAV controller variant VFC, with rotary knob

For detailed information on actuators see Chapter K5-2.2.

Application

- Circular CAV controllers of Type VFC for the precise supply air or extract air flow control in constant air volume systems
- Mechanical self-powered volume flow control without external power supply
- For low airflow velocities
- Simplified project handling with orders based on nominal size

Nominal sizes

- 80, 100, 125, 160, 200, 250

Attachments

- Min/Max actuators: Actuators for switching between minimum and maximum volume flow rate setpoint values
- Modulating actuators: Actuators for the stepless adjustment of volume flow rates

Useful additions

- Secondary silencer Type CA, CS or CF
- Heat exchanger Type WL
- Electric air heater Type EL

Special features

- Volume flow rate can be set using an external scale; no tools required
- Simple retrofit of an actuator is possible _ Correct operation even under unfavourable upstream or downstream conditions
- (1.5 D straight section required upstream) - Any installation orientation
- _
- Aerodynamic function testing of each unit on a special test rig prior to shipping

Parts and characteristics

- Ready-to-commission controller
- Damper blade with low-friction bearings
- Bellows that acts as an oscillation damper
- _ Leaf spring
- Rotary knob with pointer
- for setting the volume flow rate
- Lip seal

Construction features

- Circular casing
- Spigot with lip seal, for circular connecting ducts to EN 1506 or EN 13180
- Damper blade with low-friction bearings and special bellows

Materials and surfaces

- Casing made of galvanised sheet steel
- Damper blade and other parts made of high-quality plastic, to UL 94, V1; to DIN 4102, material classification B2
- Leaf spring made of stainless steel
- Polyurethane bellows

Installation and commissioning

- Any installation orientation
- Take the adjustment value from the characteristic on the sticker (on each volume flow controller)
- Volume flow rate setpoint can be set on external scale

Standards and guidelines

- Hygiene conforms to VDI 6022
- Casing air leakage to EN 1751, class C

Maintenance

 Maintenance-free as construction and materials are not subject to wear

Attachments

Order code detail	Actuator	Supply voltage	Auxiliary switch							
Min/Max actuators	Nin/Max actuators									
E01	Actuator with potentiometers	24 V AC/DC								
E02	TROX/Gruner	230 V AC								
M01	Actuator with mechanical stops	24 V AC/DC	_							
M02	TROX/Belimo	230 V AC								
Modulating actuators										
E03	Actuator with potentiometers TROX/Gruner	24 V AC/DC	-							

Technical data

Nominal sizes	80 – 250 mm
Volume flow rate range	6 – 370 l/s or 22 – 1332 m³/h
Volume flow rate control range	Approx. 10 to 100 % of the nominal volume flow rate
Volume flow rate accuracy	approx. ± 10 % of the nominal volume flow rate
Minimum differential pressure	30 Pa
Maximum differential pressure	500 Pa
Operating temperature	10 – 50 °C

2

Function

Functional description

The volume flow controllers work without an external power supply. A damper blade with low-friction bearings is adjusted by aerodynamic forces such that a set volume flow rate is maintained within the differential pressure range. The aerodynamic forces of the airflow create a closing torque on the damper blade. The bellows extends and increases this force while at the same time acting as an oscillation damper. The closing force is countered by a leaf spring. As the differential pressure changes, the leaf spring adjusts the position of the damper blade such that the volume flow rate is maintained almost exactly.

Efficient commissioning

The volume flow rate setpoint value can be set quickly and easily using the pointer on the external scale; no measurements are required. The advantage over flow adjustment dampers is that there is no need for repeat measurements or adjustments by an air conditioning engineer. Should the system pressure change, e.g. by opening or closing of duct sections, the flow rates in the entire system will also change if flow adjustment dampers are used; however, this is not the case with mechanical self-powered volume flow controllers A mechanical selfpowered controller reacts immediately and adjusts the damper blade such that the set constant volume flow rate is maintained.

Schematic illustration of the VFC

2

CAV controllers Order code

Order code	VFC							
	VFC / 100 / E01							
	 Type VFC Volume flow controller Nominal size [mm] 80 100 125 160 200 250 	 3 Actuator No entry: manual operation For example E01 24 V AC/DC, 3-point, potentiometer E03 24 V AC/DC, modulating 2 – 10 V DC, potentiometer M01 24 V AC/DC, 3-point, mechanical stops 						
Order example	VFC/100/E03 Nominal size	100 m						
	Actuator	Variable volume flow, 24 V AC/DC, potentiometer, control signal 0 to 10 V D						

VFC

CAV controllers Quick sizing

Air-regenerated noise

Quick sizing tables provide a good overview of the room sound pressure levels that can be expected. Approximate intermediate values can be interpolated. Precise intermediate values and spectral data can be calculated with our Easy Product Finder design programme.

The first selection criteria for the nominal size are the actual volume flow rates \dot{V}_{min} and \dot{V}_{max} . The quick sizing tables are based on normally accepted attenuation levels. If the sound pressure level exceeds the required level, a larger VAV terminal unit and/or a silencer is required.

			Α	ir-regene	Case-radiated noise		
Nominal aiza	ý	/	1	2	3	4	1
Nominal Size			L _{PA}		L _{PA1}		L _{PA2}
	l/s	m³/h			C	IB(A)	
	6	22	25	<15	<15	<15	<15
80	10	36	28	16	<15	<15	<15
00	20	72	33	21	<15	<15	<15
	42	151	39	27	18	16	17
	6	22	29	15	<15	<15	<15
100	15	54	33	20	<15	<15	15
100	30	108	37	26	18	17	18
	65	234	41	33	26	25	21
	10	36	22	<15	<15	<15	<15
125	20	72	27	16	<15	<15	<15
125	45	162	34	25	18	16	<15
	100	360	41	34	29	27	16
	18	65	25	16	<15	<15	<15
160	45	162	32	24	18	16	18
100	85	306	36	29	24	22	22
	185	666	41	35	30	28	27
	25	90	27	16	<15	<15	<15
200	60	216	31	22	16	<15	18
200	120	432	35	27	21	19	22
	250	900	37	30	25	24	26
250	37	133	31	21	<15	<15	18
	100	360	35	25	18	16	22
250	185	666	36	28	21	19	25
	370	1332	37	29	23	22	29

① VFC

 $\widecheck{(2)}$ VFC with secondary silencer CS/CF, insulation thickness 50 mm, length 500 mm

Quick sizing: Sound pressure level at differential pressure 50 Pa

(3) VFC with secondary silencer CS/CF, insulation thickness 50 mm, length 1000 mm

(4) VFC with secondary silencer CS/CF, insulation thickness 50 mm, length 1500 mm

CAV controllers Dimensions and weight

Dimensions

CAV controller variant VFC, with rotary knob

VFC/.../E0*

CAV controller variant VFC/.../E0*, with actuator (potentiometer)

VFC/.../M0*

CAV conotroller variant VFC/.../M0* with actuator (mechanical stops)

Dimensions [mm] and weight [kg]

	VFC	C VFC//E0* VFC//M0*		ØD	
Nominal size					
		mm			
80	0.5	0.8	0.7	79	
100	0.6	0.9	0.8	99	
125	0.7	1.0	0.9	124	

	VFC	VFC//E0*	VFC//M0*	ØD
Nominal size				
		mm		
160	0.8	1.1	1.0	159
200	1.0	1.3	1.2	199
250	1.3	1.6	1.5	249

CAV controllers Installation details

Upstream conditions

The volume flow rate accuracy $\Delta \dot{V}$ applies to a straight upstream section of the duct. Bends, junctions or a narrowing or widening of the duct cause turbulence that may affect measurement. Duct connections, e.g. branches off the main duct, must comply with EN 1505. Some installation situations require straight duct sections upstream.

2

Free air intake only with a straight duct section of 1D upstream.

Bend

Access to attachments

upstream of the CAV controller - has only a

negligible effect on the volume flow rate accuracy.

Space required

Attachments	1	2	3		
Attachinents	mm				
Without actuator	200	200	200		
With actuator E0*	200	200	300		
With actuator M0*	200	200	230		

A junction causes strong turbulence. The stated volume flow rate accuracy $\Delta \dot{V}$ can only be achieved with a straight duct section of at least 1.5D upstream. Shorter upstream sections require a perforated plate in the branch and before the CAV controller. If there is no straight upstream section at all, the control will not be stable, even with a perforated plate.

Space requirement for commissioning and maintenance

Sufficient space must be kept clear near any attachments to allow for commissioning and maintenance. It may be necessary to provide sufficiently sized inspection access openings.

CAV controllers Specification text

2

Standard text

This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design programme. Circular volume flow controllers for constant and variable air volume systems with low airflow velocities, mechanical self-powered, without external power supply, suitable for supply or extract air, available in 6 nominal sizes. Ready-to-commission unit consists of the casing containing a damper blade with low-friction bearings, bellows, leaf spring, and a rotary knob to set the volume flow rate setpoint. Differential pressure: 30 – 500 Pa Volume flow rate: max. 10 : 1 Spigot with lip seal, for circular connecting ducts to EN 1506 or EN 13180. Casing air leakage to EN 1751, class C.

Special features

- Volume flow rate can be set using an external scale; no tools required
- Simple retrofit of an actuator is possible
 Correct operation even under unfavourable
- upstream or downstream conditions (1.5 D straight section required upstream)
- Any installation orientation
- Aerodynamic function testing of each unit on a special test rig prior to shippin

Materials and surfaces

- Casing made of galvanised sheet steel
- Damper blade and other parts made of high-quality plastic, to UL 94, V1; to DIN 4102, material classification B2
- Leaf spring made of stainless steel
- Polyurethane bellows

Technical data

- Nominal sizes: 80 to 250 mm
- Volume flow rate range:
 6 to 370 l/s or 22 to 1332 m³/h
- Volume flow rate control range:
- approx. 10 100 % of the nominal volume flow rate
- Volume flow rate accuracy:
- approx. ± 10 % of the nominal volume flow rate
- Minimum differential pressure: 30 Pa
- Maximum differential pressure: 500 Pa

Sizing data

- V _____ [m³/h] - Δp_{st} _____ [Pa]
- L_{PA} air-regenerated noise _____ [dB(A)]
- L_{PA} Case-radiated noise _____ [dB(A)]

Order options

1 Type

VFC Volume flow controller

2 Nominal size [mm]

- □ 80
 □ 100
 □ 125
 □ 160
- □ 250

3 Actuator

	No entry: manual operation
	For example
🗆 E01	24 V AC/DC, 3-point, potentiometer
🗆 E03	24 V AC/DC, modulating 2 – 10 V DC
	potentiometer

□ M01 24 V AC/DC, 3-point, mechanical stops

Constant volume flow control – CONSTANTFLOW

Basic information and nomenclature

- Product selection
- Principal dimensions
- Nomenclature
- Construction
- Correction values for system attenuation
- Measurements
- Sizing and sizing example

2

05/2015 – DE/en **ТКО** теснык

Constant volume flow control – CONSTANTFLOW Basic information and nomenclature

Product selection

2

	Туре								
	RN	EN	VFL	VFC	RN-Ex	EN-Ex			
Type of system									
Supply air	•		•	•	•	•			
Extract air	•		•	•	•	•			
Duct connection, fan end									
Circular	•		•	•	•				
Rectangular						•			
Volume flow rate range									
Up to [m ³ /h]	5040	12100	900	1330	5040	12100			
Up to [l/s]	1400	3360	250	370	1400	3360			
Air quality									
Filtered	•		•	•	•	•			
Office extract air	•		•	•	•	•			
Polluted	0	0	0	0	0	0			
Contaminated	0	0	0	0	0	0			
Control function									
Constant	•		•	•	•	•			
Variable	0	0		0					
Min/Max	0	0		0					
Acoustic requirements									
High < 40 dB(A)	0	0		0	0	0			
Low < 50 dB (A)	•		•	•	•	•			
Special areas									
Areas with explosive atmospheres					•	•			
•	Possible								
0	Possible under certain c	onditions: Robust unit var	iant and/or specific actu	ator or a useful additional	product				
	Not possible								

K5 – 2.3 – 2 **ТКОХ**[®]тесник

Constant volume flow control – CONSTANTFLOW Basic information and nomenclature

Principal dimensions

ØD [mm] Outside diameter of the spigot

ØD₁ [mm] Pitch circle diameter of flanges

ØD₂ [mm] Outside diameter of flanges

ØD₄ [mm] Inside diameter of the screw holes of flanges

L [mm] Length of unit including connecting spigot

Length of casing or acoustic cladding

B [mm] Duct width

B₁ [mm] Screw hole pitch of flange (horizontal)

B₂ [mm] Outside dimension of flange (width)

Nomenclature

Acoustic data

f_m **[Hz]** Octave band centre frequency

L_{PA} [dB(A)]

A-weighted sound pressure level of airregenerated noise of the VAV terminal unit, system attenuation taken into account

L_{PA1} [dB(A)]

A-weighted sound pressure level of airregenerated noise of the VAV terminal unit with secondary silencer, system attenuation taken into account

L_{PA2} [dB(A)]

A-weighted sound pressure level of caseregenerated noise of the VAV terminal unit, system attenuation taken into account

L_{PA3} [dB(A)]

A-weighted sound pressure level of caseregenerated noise of the VAV terminal unit with acoustic cladding, system attenuation taken into account

All sound pressure levels are based on 20 μ Pa.

B₃ [mm] Width of device

H [mm] Duct height

H₁ [mm] Screw hole pitch of flange (vertical)

H₂ [mm] Outside dimension of flange (height)

H₃ [mm] Unit height

n [] Number of flange screw holes

T [mm] Flange thickness

m [kg] Unit weight including the minimum required attachments for manual adjustment

Definition of noise

Volume flow rates

\dot{V}_{nom} [m³/h] and [l/s]

Nominal volume flow rate (100 %)

- The value depends on product type and nominal size
- Values are published on the internet and in technical leaflets, and stored in the Easy Product Finder design software.
- Upper limit of the setting range and maximum volume flow rate setpoint value for the CAV controller

Differential pressure

∆p_{st} [Pa]

Static differential pressure

$\Delta p_{st min}$ [Pa]

Static differential pressure, minimum

- The static minimum differential pressure is equal to the pressure loss of the CAV controller when the damper blade is open, caused by flow resistance (bellows, crossbar)
- If the pressure on the CAV controller is too low, the setpoint volume flow rate may not be achieved, not even when the damper blade is open
- Important factor in designing the ductwork and in rating the fan including speed control
- Sufficient duct pressure must be ensured for all operating conditions and for all controllers, and the measurement point or points for speed control must have been selected accordingly to achieve this

└ [m³/h] and [l/s]

Volume flow rate

ΔV́ [± %]

Volume flow rate tolerance from setpoint value

Static differential pressure

Constructions

Galvanised sheet steel

- Casing made of galvanised sheet steel
- Parts in contact with the airflow as described for the product type
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

Powder-coated surface (P1)

- Casing made of galvanised sheet steel, powder-coated RAL 7001, silver grey
- Parts in contact with the airflow are powder-coated or made of plastic
- Due to production, some parts that come into contact with the airflow may be stainless steel or aluminium, powder-coated
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

Stainless steel (A2)

- Casing made of stainless steel 1.4201
- Parts in contact with the airflow are powder-coated or made of stainless steel
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

The quick sizing tables show the sound pressure levels that can be expected in a room both for the air-regenerated noise and for the caseradiated noise. The sound pressure level in a room results from the sound power level of the products - for a given volume flow rate and differential pressure and the attenuation and insulation on site. Generally accepted attenuation and insulation values have been taken into account. The distribution of air across the ductwork, changes of direction. end reflection, and room attenuation all affect the sound pressure level of the air-regenerated noise. Ceiling insulation and room attenuation influence the sound pressure level of the caseradiated noise.

Correction values for acoustic quick sizing

The correction values for the distribution in the ducting are based on the number of diffusers assigned to any one air terminal unit. If there is just one diffuser (assumption: 140 l/s or 500 m³/h), no correction is necessary.

One change of direction, e.g. at the horizontal connection of the diffuser plenum box, has been taken into consideration for the system attenuation values. Vertical connection of the plenum box does not result in a system attenuation. Additional bends result in lower sound pressure levels.

Octave correction for the distribution in the ducting, used to calculate the air-regenerated noise

└ in [m³/h]	500	1000	1500	2000	2500	3000	4000	5000
[l/s]	140	280	420	550	700	840	1100	1400
[dB]	0	3	5	6	7	8	9	10

System attenuation per octave to VDI 2081 for the calculation of the air-regenerated noise

Centre frequency [Hz]	63	125	250	500	1000	2000	4000	8000
		ΔL						
	dB							
Change of direction	0	0	1	2	3	3	3	3
Mündungsreflexion	10	5	2	0	0	0	0	0
Room attenuation	5	5	5	5	5	5	5	5

The calculation is based on the end reflection for nominal size 250

Octave correction for the calculation of case-radiated noise

	63	125	250	500	1000	2000	4000	8000			
Centre frequency [Hz]	ΔL										
	dB										
Ceiling insulation	4	4	4	4	4	4	4	4			
Room attenuation	5	5	5	5	5	5	5	5			

Reducing the sound pressure level of the air-regenerated noise

Measurements

2

The acoustic data for the air-regenerated noise and case-radiated noise are determined according to EN ISO 5135. All measurements are carried out in a reverberation chamber to EN ISO 3741.

The sound pressure levels for air-regenerated noise L_{PA} given by us result from measurements in a reverberation chamber. The sound pressure L_P is measured for the entire frequency range. The evaluation of the measurements, including system attenuation and A-weighting, results in the sound pressure level L_{PA} .

Measuring the case-radiated noise

The sound pressure levels for case-radiated noise L_{PA2} given by us result from measurements in a reverberation chamber. The sound pressure L_P is measured for the entire frequency range. The evaluation of the measurements, including system attenuation and A-weighting, results in the sound pressure level L_{PA2} .

Constant volume flow control – CONSTANTFLOW Basic information and nomenclature

Sizing with the help of this catalogue

This catalogue provides convenient quick sizing tables for CAV controllers. The sound pressure levels for air-regenerated noise and for caseradiated noise are provided for all nominal sizes. In addition, generally accepted attenuation and insulation values have been taken into account. Sizing data for other volume flow rates and differential pressures can be determined quickly and precisely using the Easy Product Finder design programme.

2

Sizing example

Given data

 $\dot{V}_{max} = 280 \text{ l/s} (1010 \text{ m}^3/\text{h})$ $\Delta p_{st} = 150 \text{ Pa}$ Required sound pressure level in the room 35 dB(A)

Quick sizing

RN/200 with circular silencer CS 050/200×1000 Air-regenerated noise $L_{PA} = 26 \text{ dB}(A)$ Case-radiated noise $L_{PA} = 31 \text{ dB}(A)$

Easy Product Finder

The Easy Product Finder allows you to size products using your project-specific data.

You will find the Easy Product Finder on our website.

electroning Zeichnur	ng Bestelldetails																
Bestellschlussel (Ankå	icken zum Andem)											Schall	dample				
RN / 200 /	/ / 3244010 18%											itre	Schille	timplet			
Regekomponente -										Anwendung/Foto/Video							
Lunqualität	nicht belastet (verzinktes S	tahiblech)					-		-		-	-					
Betriebomedium	manuel						RN		a	J)	- Alexandra			٩			
Regelung	Johne Regier Johne Stellant	rieb					Produktioto										
Volumenation							Akusti	ische Ein	abedat	en				_			
konstant / c					Г	1.010 m²/h (405040)	L, Shi L, Ab Ap _{st}	imung d	25		OEX	dB(A) dB(A) Po	(1001	0001			
Volumentium Renals	line and the second						Akust	iche Fo	where								
Fiter							Dater	and the local	Itw St	a. h	terda w	1					
Dammochale	ohne Danmschale	e Dammschale							3 126	250	500	16 2	e ak	1040			
Schalldampler	ohne und mitICSI1000I 50						+ L- St	7	0 63	55	52	51 5	49	45			
Sein	Abuennen	Abuessen Vie/Ad Int/Rial Poer				L- Ab		9 46	40	37	37 4	2 40	26				
		ven	bis	Stiönungsgeräusch	Abstrahigeräusch					district.	-	201.3		1.000.0			
P RN	200	324	1298	47	39	151.00											
RN+CS 050/+1000	200	324	1296	32	39	419.00 (HAL CS)	Ergebra	sse bei \	7 = 1010	m/h und	1 Oper *	150 Pa					
RN	250	522	2088	42	34	165,00	L _# Stron	ning=4	7 dB(A) (11 dB D.	implur	(g)					
RN+CS 0503/1000	250	\$22	2088	28	34	474,00 (Hit. CS)	L. Abstr	ahlung	39 dBIA	1 (9 dB (länplu	ng)					
RN	315	828	3312	40	31	195,00	- C.										
RN+CS 050/~1000	315	828	3312	26	31	548.00 (hkl. CS)											